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Executive Summary 

The main objective of this deliverable is to present a positive mathematical programming 

based methodology for recovering the production specific costs for agricultural activities 

collected by the FADN database. It is well known that FADN, at European level, doesn’t 

collect the information about the variable costs associated to the different farm activities, but 

only the total variable costs at farm level. In this respect, it is evident that all the analysis that 

aims to evaluate the production allocation decisions cannot be carried without costs derived 

from external sources (engineering information, literature, etc.), with the risk to not be able to 

differentiate the costs according to the farm specialization and the farm size (economic and 

physic). The policy and market evaluations that want use FADN are constrained to this 

important lack, because the specific profitability of the farm activities included in the sample 

is not explicit and it should be estimated.  

In this context, the calibration process adopted inside the PMP is proposed for estimating this 

farm production decision component. The standard PMP calibration method is modified so 

that it is possible to generate the observed production plan using the dual structure of the 

problem proposed by Howitt and Paris (1998). This model allows to evidence the dual 

information linked to each farm production activity and estimate it using an approach based 

on the Heckelei’s PMP proposal (2002). In the following sections, the standard approach will 

be presented with two PMP calibration variants for recovering the farm activity marginal 

costs. The first one aims to estimate the marginal costs using the technical farm information 

and the activity marginal revenue, according to the Heckelei’s proposal; while, in the second 

proposal, the Heckelei’ PMP approach is extended to the same estimation using the 

information about the farm total variable costs.   

For this last methodology, the deliverable presents an application to a group of farms (35) 

collected from the Italian FADN archive, where the information about hectares, yields, prices, 

subsidies and farm total variable costs is used for estimating the specific costs associated to 

the farm production plan. The results achieved have been compared with the real specific 

accounting costs registered by the national database – instead of the European database, 

where this kind of information is, as known, not captured –, in order to test the estimation 

goodness and the related estimation errors. The estimation produces very interesting results, 

that fit with a very high approximation degree the observed levels. This results should be 

viewed as a preliminary results that should be tested with more observed data and on much 

more differentiated farm typologies.     
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1. Introduction 

The main objective of this deliverable is to present a positive mathematical programming 

based methodology for recovering the production specific costs for agricultural activities 

collected by the FADN database. It is well known that FADN, at European level, doesn’t 

collect the information about the variable costs associated to the different farm activities, but 

only the total variable costs at farm level. In this respect, it is evident that all the analysis that 

aims to evaluate the production allocation decisions cannot be carried without costs derived 

from external sources (engineering information, literature, etc.), with the risk to not be able to 

differentiate the costs according to the farm specialization and the farm size (economic and 

physic). The policy and market evaluations that want use FADN are constrained to this 

important lack, because the specific profitability of the farm activities included in the sample 

is not explicit and it should be estimated.  

In this context, the calibration process adopted inside the PMP is proposed for estimating this 

farm production decision component. The standard PMP calibration method is modified so 

that it is possible to generate the observed production plan using the dual structure of the 

problem proposed by Howitt and Paris (1998). This model allows to evidence the dual 

information linked to each farm production activity and estimate it using an approach based 

on the Heckelei’s PMP proposal (2002). In the following sections, the standard approach will 

be presented with two PMP calibration variants for recovering the farm activity marginal 

costs. The first one aims to estimate the marginal costs using the technical farm information 

and the activity marginal revenue, according to the Heckelei’s proposal; while, in the second 

proposal, the Heckelei’ PMP approach is extended to the same estimation using the 

information about the farm total variable costs.      
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2. Positive Mathematical Programming 
standard approach 

Positive Mathematical Programming (PMP) is widely used for evaluating the effects of the 

CAP instruments on the dynamics of the agricultural processes and farm economic variables, 

both for ex-post and ex-ante analysis. The main contribution of this methodology to 

agricultural economics is due to its capacity to maximize the information contents in the 

agricultural datasets available at European level, as FADN, REGIO, IACS (Arfini et al., 2003; 

Paris and Howitt, 1998). Thanks to the recovering of farm decision variables, by the way of 

estimating the total variable cost function, PMP is capable to reproduce the exact observed 

farm allocation plan and the decision variables (total specific variable costs) that led farmers 

to decide for such a production plan.  

Many papers have adopted the PMP methodology for developing models capable to assess the 

impact of proposed or already implemented CAP reforms. Also in European research projects, 

this approach is used with micro-based information, like FADN1. In most cases, the PMP is 

proposed in the so-called “classical” form, where the procedure is articulated in three phases: 

the differential costs recovering, the estimation of the non-linear cost function and, finally, the 

calibration by using a non constrained production model with non-linear objective function 

(Howitt, 1995). Applications of this basic version are the most diffused, e.g. for evaluating 

CAP’s reform impacts (Arfini et al., 2005; Judez et al., 2002). 

An attempt to introduce innovations in the basic approach is due to Heckelei and Wolff 

(2003) that proposed a methodology that overcomes the first phase for calibrating the 

observed situation by directly  imposing the first order conditions in the cost function 

estimation phase. This approach was also used with cross-section data in order to enhance the 

consistency of the cost estimation (Heckelei and Britz, 2000). More advanced extensions of 

the PMP are due to Paris (2001) that generalizes the method adopting an equilibrium model in 

a static framework and in a dynamic price expectation approach. 

The demand for an assessment of agricultural policy measures rose with force during this last 

decade and contributed to the development of a set of economic tools that would respond to 

such needs using all the available information. In this field, the PMP plays a first order role. 

This methodology can provide useful results to policy makers even in the presence of a 

limited set of information as it generally happens when European agricultural databases are 

adopted. PMP can responds with flexibility and in a consistent way to a large spectrum of 

policy issues, typically concerning the land use change, production dynamics, variation in 

gross margin and in other main economic variables (costs, subsidies, gross saleable 
                                                 
1 Several European research projects have developed and applied models based on the Positive Mathematical 
Programming methodology, as CAPRI (Heckelei, 1997; Heckhelei and Britz, 2000) and EUROTOOLS (Paris 
and Arfini, 2000) in the V FP, GENEDEC (contract no. SSPE-CT-2004-502184 and CARERA (contract no. 
SSPE-CT-2005-022653) in the VI FP. 
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production, etc.). However, all these applications are developed exploring the supply side of 

the agricultural sector while avoiding to implement an evaluation of the demand side, by 

measuring the effects on the output market prices. Indeed, the literature about PMP models 

application seems to indicate that such a class of models was just developed for investigating 

the supply side of the agricultural sector, delegating the demand issues side to well-posed 

problems solved by econometric techniques. 

 

2.1. The mathematical structure of the PMP model 
The methodology described in Paris and Howitt (1998) and Paris and Arfini (2002), as a 

mathematical programming process to analyse farmer behaviour, that can recover the latent 

information driving the farmer decision process and using it in assessing the likely responses 

to market and policy scenarios. PMP consists of three steps.  

The first is defined by N linear programming (LP) models, one for each macro-farm, and by 

an additional LP model for the entire sub-region. The n-th individual macro-farm model 

(n=1,…,N), uses all the available information pertaining to the n-th farm in order to derive the 

vector of shadow prices of the limiting allocable inputs, y, and the differential marginal cost 

vector corresponding to the vector of realized output levels,  . The n-th farm LP model has 

the following structure: 

 

(1)     1 1

max [ ( )]
n
v

V V
n n n n
v v v v v

x v v

GM x pr c xh sh
 

    n

 

where 
n
vx  is the production level for each process, v=(1,...,V), of each farm in the sample, 

n=(1,...,N), while 
n

vpr e  are, respectively, the price and the cost associated with each 

product level. The objective function takes into consideration the amounts of farm aid — 

defined as the product of the growing area, 

n
vc

n
vxh , and the per hectare aid level, 

n
vsh — as part 

of the farm’s gross margin (GM). The objective function specified in (1) is subject to a series 

of constraints that can be expressed as:  

 

(2)     1

( )
V

n n n
v v

v

a x b



 

(3)     
n n
v vx x    

(4)       0n
vx 
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where  is the element of the technical matrix of the different activities implemented by 

each of the n farms in the sample (the n -th matrix An of technical coefficients is defined as 

An=[anij], where anij=hRni /xRnJn), bn  is the vector of availability of limiting allocable 

inputs. (4) presents the non-negativity constraint placed on the primal variables of the 

problem. 

n
va

Constraints (2) are called structural constraints, while constraints (3) are called calibration 

constraints. The constraint in Equation (2) indicates the overall availability of scarce factors to 

be allocated among the various production processes V. In the present model, the only 

limiting factor is the land to be used for the various production processes. Constraint (3), on 

the other hand, concerns the production capacity of each activity on the farm, defined 

according to the levels of production observed. Constraint (3) reproduces the initial situation 

observed in terms of production levels for each farm activity. The term , a low positive 

number selected at will, serves to separate structural constraint (2) from calibrating constraint 

(3). In fact, if this term were omitted, the linear dependence between the two constraints 

would lead to dual positive values for all the calibration constraints while the shadow price 

for the structure constraint in (2) would remain at zero, making interpretation difficult and 

hardly reflecting reality (Paris and Arfini, 1995). 

The problem of linear programming (1)-(4) uses calibration constraints to reconstruct the 

situation observed, restoring the dual values associated with the production capacity 

constraints in (3),
n
v . 

This initial phase, therefore, serves to derive the dual variables specific to the production 

processes used on the farm. This information incorporates the technical and economic 

elements the farmer considers in defining the farm production plan.  

However, the lack of specific cost information at farm level means we cannot derive the cost 

function parameters for the marginal product, since its marginal cost value is null. So we have 

to implement an alternative first phase, different from the traditional PMP model formulation, 

where we derive the shadow prices associated with the binding and calibrating constraints, by 

the resolution of a problem in which the constraints are represented by the equilibrium 

conditions of the problem (1) – (4). This problem is solved by means of  traditional 

econometric tools (Heckelei, 2003) and by an innovative methodology we propose below. 

 

2.2. Deriving the cost function 
The objective of the second phase of the PMP procedure is to estimate the farm cost function. 

Starting from the vector of the shadow prices associated with the calibration constraints, we 

can determine a new cost function that meets the criteria defined by both economic theory of 

production costs and farm reality. To meet the non-linearity condition for the objective 

function of the third phase, a quadratic functional shape is used (Howitt, 1995). Starting from 
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the information on the problem of linear programming it is, therefore, possible to build a new 

quadratic cost function defined as follows:  

 

(5)     

1
( ) '

2
c x x Qx  

 

 

where   and c  are, respectively, the vector of the dual values that determine the first phase 

and the vector of the accounting costs, x  is the vector of the known production levels and Q  

the matrix of the non linear function of total costs. In (5) the elements for matrix Q  are still 

unknown and must be derived through suitable estimation methods. In the literature (Paris et 

al., 2000) estimation through application of the principle of maximum entropy is preferred. 

With this principle, the uncertainty regarding the realization of that event must be maximised 

in order to derive the probability of distribution for a given event. To clarify the concept, we 

introduce the general formula of the entropy for s possible occurrences of the same 

phenomenon: 

 

(6)    
1 2

1 1

1
( , ,..., ) log log

s s

s i i
i ii

H p p p p p p
p 

    i

 

 

where ip  is the i-th probability of a probability distribution made up of s elements. From (6) 

one can see that if the probability 

1
ip

s


— that is the case of uniform distribution, where the 

degree of uncertainty is highest — the function  is maximised and is an increasing, monotone 

function of s. The case of uniform distribution corresponds to the case where some elements 

are available for a given phenomenon. However, when we know some distribution moments, 

following the above reasoning, we can maximize the entropy of the probability distribution by 

placing constraints on the moments used to derive it. In other words, we look for that 

probability distribution that comes closest to the uniform distribution (Jaynes, 1957). 

Considering that entropy measures the degree of uncertainty regarding realization of a 

phenomenon, this approach can be applied to estimating a parameter, the value of which can 

be defined within an as-yet unknown probability distribution. On the basis of these concepts 

and the adaptations given by Paris and Howitt (1998), the parameters of matrix Q  can be 

recovered by maximizing the probability distribution associated with an interval of suitably 

specified support values.  The non linear programming problem of maximum entropy is 

applied to the estimation of the matrix Q decomposed according to the Cholesky factorization, 
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where , where L is a triangular matrix, D a diagonal matrix and  . 

The problem can then be resolved by maximizing a probability distribution for which we 

know the expected value, which corresponds to the marginal cost 

'Q LDL TT  '

)

1/ 2T LD

( c  determined in the 

first phase. The objective function of the problem of maximum entropy is thus presented as 

follows:  

 

(7)     

 

 

 

( ) ( )
' '

, , 1 ' 1 1

' '
1 ' 1 1

1

max log

log

log

l d u

V V W
l l
vv w vv w

p p p v v w

V V W
d d
vv w vv w

v v w

W
u u
w w

w

p p

p p

p p

    

  















 

( )
lp  ( )

dp where  and  are the probability of the distribution associated with elements of the 

triangular matrix L and of the diagonal matrix D while ( )
up   are elements of the probability of 

errors, or differences, vs. the farm costs-sum. In fact, the cost matrix is estimated on the basis 

of the following equation:  

 

(8)    
 '' '' ' ''

' 1 '' 1

V V

v v vv v v v
v v

c T T
 

x
 

   
 

 
 

 

( ) ( )( )c  
In (8),  is the average marginal cost of the production processes for the group of N 

farms considered in the model.  is an element of the matrix T obtained through Cholesky’s 

* decomposition. In fact:   

( )T 

 

(9)    
   1/

'' ' ' ' '
' 1 1 1

V W W
l l d d

vv vv w vv w vv w vv w
v w w

T p z p
  

  2
z


  

 
  

 

 

The relationships inserted into (9) clarify the role of the support values in the process of 

estimating the cost matrix. The components ( )
lz   and ( )

dz   are the appropriately selected support 

values (Paris and Howitt, 1998). Associated with the distribution of probability, ( )
lp   and ( )

dp   , 

 11



they define the elements of the triangular matrix L and of the diagonal matrix D. It must be 

pointed out that matrix Q  is unique and is derived from the marginal costs of the farm-sum. 

In this context, the cost function specified according to the Q  matrix is also called the frontier 

cost function, indicating that the farm-sum cost function is the most efficient activity cost 

structure (Paris and Arfini, 2000). 

To define the quadratic marginal cost associated with each form in the sample, the difference 

(or error) vs. the average marginal cost must be determined. Thus, for the processes 

implemented — that is for those which are strictly positive — the individual marginal cost 

function is:  

 

(10)   
   '' ' ''vT ''

1 ' 1 '' 1

W V V
n un un n
v vw vw vv v v

w v v

c p z T x
  

n
v

 
    

 
  

)

 

 

 

where   is the individual marginal cost of the n-th farm. The average errors are 

given by the product obtained, multiplying the specially identified support values 

( ) ( )( n nc  

( )
unz   and the 

relative probabilities ( )
unp  . Moreover, given that the cost function contains all production 

processes implemented by the sample of farms considered, we must also consider those farms 

that have not implemented the entire range of processes identified for the sample as a whole. 

For this reason, the model calls for the following relation for N farms:  

 

(11)   
   '' ''

1 ' 1 '' 1

W V V
n n un un n

v vw vw vv v v
w v v

c p z T x
  

' ''vTv

 
      

   

All the above probability distributions must meet the following condition:  

 

(12)     

( )1

( )1

( )1

1

1

1

W l

w

W d

w

W un

w

p

p

p







 

 








 

 

Problem (7)-(12) provides the probability distribution values for the elements of the triangular 

matrix L, the diagonal matrix D and for the vector of the residual marginal variable costs for 
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each farm in the sample. The reconstruction of the elements that make up matrix  is 

obtained from the following:  

Q

 

(13)      
 ' ''

'' 1

V

vv vv v v
v

q T T


  ' ''

 

where  is one of the parameters that make up the cost matrix Q . The cost function 

specified by the above method preserves the technical information regarding the calibration 

constraints.  

( )q 

If the cost function is inserted in a problem similar to the one identified in the first phase, it 

makes it possible to reproduce the situation observed, but without the calibration constraints. 

This last model exactly reproduces the base period allocation and output decision of the single 

-th macro-farm and of the entire region.  That is, the primal and dual solutions of this 

quadratic programming models are exactly equal to the primal and dual solution of the initial 

LP model which, in turn, reproduces the results of the base period.  This is the meaning of 

calibration within the PMP methodology.  This model is analogous to the model specification 

and selection of econometric studies. The prediction step of PMP exploits the calibrated 

model to generate responses in the endogenous variables induced by the variation of some 

relevant parameters, assimilated to the exogenous variables of econometric models. It can be 

used to analyse various scenarios of agricultural policy with changes in output prices, and 

limiting resource availability.  

n
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3. An alternative to the traditional PMP model 

One of problems of the FADN archive regarding the probable dynamics of farm production 

plans and farm revenue is the absence of any kind of specific activity costs. This means that, 

when specifying a PMP model, the cost function recovered in the second phase of the 

methodology cannot be correctly derived, because marginal costs associated with the 

calibrating constraint equal zero. This happens for the farm activity with the lowest marginal 

profit .   

In other words, the lack of specific cost information at farm level means that we cannot derive 

the cost function parameters for the marginal product, since its marginal cost value is null. To 

solve this problem, the literature provides a number of contributions that modify PMP 

traditional formulation. In particular, Heckelei (2002) offers a wide range of instruments for 

assess the cost function starting from the observed production level. 

In this case, one possible solution is an alternative first phase, different from the traditional 

PMP model, where one derives shadow prices associated with binding and calibrating 

constraints by using the equilibrium conditions of the problem (1) – (3). This implies that the 

first phase of the PMP methodology changes in such a way that all the marginal costs can be 

recovered from the observed production information values using the optimal conditions as 

the relevant information for calibrating the observed situation.  

One of the most useful ways to overcome the absence of specific activity costs is to directly 

define the first order conditions of the problems (1)-(3) and to optimise the problem by 

deriving shadow prices and the production levels by minimizing the slackness variables 

associated with dual endogenous variables. In the following section we present an overview 

of the principles of the alternative method to traditional PMP.  

In order to present the revisited PMP methodology without prior information about specific 

variable costs, we can say that that the first phase of PMP in the traditional approach  as 

shown by Paris-Howitt (1998) is presented as a tautological procedure aiming to identify the 

marginal costs associated with different farm products. In fact, the level of activity variables 

is already known before the model resolution and does not require derivation by optimisation. 

So the first phase of PMP can be avoided, and substituted by a two step procedure. This is 

obtained starting from the model suggested by Heckelei (2002), in which first order 

optimality conditions are imposed in the first phase of PMP.  

Heckelei’s paper says that “the general alternative to PMP with respect to calibrating or 

estimating a programming model is a simple methodological principle: always to directly use 

the first order conditions of the very optimisation model that is assumed to represent or 

approximate producer behaviour and is suitable to the simulation needs of the analysts”. This 

approach is a maximisation model in which one overcomes the problem of poor data 
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transmission about farm behaviour by estimating shadow prices of resource constraints 

simultaneously with the other parameters of the model. 

This methodology supplies a general and flexible tool for estimating parameters of duality 

based behavioural functions with explicit allocation of fixed factors. In this context, the only 

difference between programming and econometric models is the form of the simulation model 

(Heckelei, 2003). But if the solution of this problem is known at the beginning of the analysis, 

Heckelei’s  first phase can be omitted and optimality conditions imposed. 

The approach proposed here as an alternative to traditional PMP in the absence of cost 

information on individual farm activities is mainly based on Heckelei’s alternative solution. 

The difference is that it estimates marginal costs related to the binding inputs and the farm 

products.  

In order to explain this, we can start with the Langrangian function associated with the 

problem (1)-(4), in which the variable costs in the objective function are supposed to be 

unknown : 

 

(14)    ( ) ' ' ( ) ( )L p c x sh h y b Ax x x          

 

From the Lagrangian function above we can derive, by Kuhn-Tucker conditions, the  

optimality relation for the problem, as follows: 

 

(15)     
0

L
Ax b

y


  

  

and 

(16)     
' 0

L
A y r

x


   
  

 

Optimality condition (15) states that for the maximum level of the objective function the level 

of the variable should use all the quantities of input available, in such a way that the 

structural constraint is completed. Condition (16) establishes the economic condition on the 

basis of which the marginal cost must be equal or greater than the marginal revenue. In this 

case, marginal revenue is shown by vector . This vector is the result of all positive economic 

parameters considered by the objective function. More specifically, the elements of the vector 

are composed by the sum of the price of the product and its level of aid. The element v for 

farm n is specified as follows: 

x

r
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(17)      [ ]n n n n
v v v vr p sh a 

 

where sh is multiplied by the inverse yields of the crops to obtain the value of aid associated 

with one unit of product quantity. 

In the two optimality conditions above we can observe that for equation (15) we know 

perfectly all elements: the level of output that maximises the objective function of the PMP 

specification concerns the observed output. But equation (16) is not perfectly known at the 

beginning of the solution; we have no prior information on marginal costs of input or shadow 

prices for the different processes.     

At this level, Heckelei provides two solutions: 

1. The shadow prices from the first phase of the traditional PMP model can be 

derived by specific econometric tools (e.g. generalized least squares method)  

directly applied to Equations (15) and (16); 

2. Stakeholders and land market information can supply the marginal value of the 

land,  and this exogenous information can be used to derive shadow prices of 

outputs; 

In this framework, we propose a third alternative that matches an endogenous estimation of 

all the dual values of the problem (1-4), but without the optimality condition (4), and using 

land value to calculate the dual values for each activity. 

We suppose that the farmer prefers to rent land at a price not higher than the marginal internal 

process, or the product with the lowest contribution to farm total profit. In fact, the choosing 

process, in the short term, considers the marginal contribution of each crop to farm revenue. 

So land purchase is submitted to a comparison between the marginal cost of the land and the 

marginal productivity of this input for each production possibility. All processes in the 

production plan of the farm must show non-negative economic return, always taking into 

account the land rent costs. So the maximum value of the land entering the decision process 

should not be greater than the lowest contribution to farm revenue provided by a unit of 

output. 

On the basis of this assumption, the value of the land in the decision process of each farmer 

can be calculated as: 

 

(18)      min 1v v vy p a sh 
 

 

ywhere the  is the maximum value of land for a certain farm estimated as the minimum 

marginal profit contribution among all the farm processes. Prior information about the 
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shadow price of the land, rather than being exogenous, is endogenously derived from 

observed information. 

This mechanism is the same as that applied in the first phase of the traditional PMP. The 

resolution of the linear programming model together with the constraints associated with the 

py problem in such a way that we can estimate a 

st function for all farms; equation (19) introduces farm 

8)    

production capacity of the different farm activities helps to define a shadow price for the land 

using the marginal profit of the least profitable crop. The calibrating constraints are generally 

defined adding to the right hand side of the inequality a small perturbation component in such 

a way that only one crop remains without a positive shadow price. In other words, the crop 

with the lowest contribution to total farm profit in fact defines the marginal value of the land. 

This is why the minimum value of marginal revenue among all the crops activated by the 

farms is introduced into the constraint.  

Using the results of this condition to reconstruct the cost function of the farms, we can 

directly implement the maximum entro

quadratic cost function to reproduce the observed production plan. In this case, like the 

traditional model, we reconstruct one Q matrix for the entire sample of farms, and we can 

estimate the deviations of marginal farm costs from the so-called frontier cost according to 

this matrix. This means that we state for two main relations: one on the sample, and the other 

for each individual for each farm.   

Relation (18) represents the equivalence between the dual optimal condition and the marginal 

cost component of the quadratic co

information and thus also error component u, as the marginal cost deviation at farm level from 

the cost of the most efficient farm in the sample, that is the idealised farm from equation (18).    

 

avg avg avg avg avg sum
v v v v vv vv

p sh a y a q x 
  (1  

 

9)    
n n n n n n
v v v v vv vv

n
vp sh a y a q x u 

     (1

 

eter of the relation is obtained as average of the 

ample values.)   

ve equations and without other equations or information obtained from 

(The superscript “avg” means that the param

s

The resolution of a maximum entropy problem is very similar to that in traditional PMP, with 

only the two abo

optimization processes (i.e. first phase of PMP). A cost function able to reach the calibrated 

solution in the subsequent “simulation” phase can be derived.     
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3.1. Regional aggregation of PMP models for policy evaluation 
The PMP model is therefore a regional model in which information on the farms is 

 predictions 

 the single sub-regional 

models and maximisation during simulation. Each simulation is carried out simultaneously for 

is available, the 

simulation process involves the resolution of a problem of optimisation for each single sub-

 effects of agricultural policy measures at regional level, the 

important aspects of the PMP model are therefore the aggregation of cost functions into a 

stimation of the cost function for each sub-region 

has the specific aim of estimating the parameters comprising the matrix , which 

(20)   
n

n

aggregated at sub-regional level and simulated by PMP procedure to provide

about agricultural policy change that are as representative as possible. 

From a methodological point of view, the model allows aggregation of

all sub-regions, allowing for the introduction of constraints at regional level. 

In many regional models based on the use of PMP for which literature 

region, without considering the complex constraints at regional level and the profitability of 

other sub-regions within the same region. In this model, the simulation phase includes the 

maximisation of an objective function aggregated by group of sub-regions that comprise the 

region. For this reason, the model appears as a “concatenated” model. A model in which 

during the policy scenario simulation phase, the decisions taken by each sub-region are linked 

to the decisions taken by the bordering sub-regions through the definition of a problem of 

simultaneous optimisation.  

In the phase concerning the

single regional model, and the construction of a suitable set of constraints to correctly 

simulate the policies for the whole region. 

As illustrated in the previous section, the e

Q

incorporates all the information concerning the relations of substitution and complementarity 

between the processes, and represents the total cost function of the sub-region. Very briefly, 

we can express the Q  matrix as follows: 

 

1 1
11 1

1 1
11 11 1 1

11 1

1 1
1

1 1
1 1

1

11 1

1

n
s s
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s s
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s s

n n nn nn

s s
n n

p p

w w w wn
p p

p p

w w w wn nn
p p

q q

Q

q q

  
  

            
     

   
  

   


       
   
     

 
 
 
   
 
 
  

   

   



  



 



where, as shown by Paris and Howitt (1998), the parameters of the  matrix are estimated 

through the distribution of probability 

Q
s
nnp  (s=1,…,S) associated with the interval * * * * with 

the support weighting s
nnw .  
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In the second phase of the PMP procedure the model will therefore estimate the same number 

of cost functions as there are sub-regions in the referred region. Estimated in this way, the 

cost functions will represent 

will be used during the a ric

the specific economic structure of each homogeneous area and 

g ultural policy measure simulation phase.  

ents. 

the initial 

where  represents the gross regional income, while  represents the gross 

iven that the structure of the constraints of each sub-region is independent from the others, 

the maximisation of the gross regional income is the result of the maximisation of the gross 

 of each ion at 

al level. 

d, 

The information on the estimated cost functions for the sub-region  (Q* ) using Maximum 

Entropy are gathered in a parameter indicated by Q̂ , which links the single Q* matrices in 

one single vector. The same aggregation procedure is developed for other information needed 

for constructing the policy model; output price, yield and compensation paym

The information reorganised into vectors is included in the regional model and allows for an 

efficient definition of the problem of maximisation, as the overall group of vectors joins all 

the components concerning the objective functions of the n sub-regions in the referred region 

in one single matrix. The aim of the regional model is therefore to reproduce 

production situation for the entire referred region without any calibration constraints, then to 

calibrate the model for the entire region once more. 

More precisely, the objective function of the regional model sums the single objective 

functions of each sub-region, maximising the overall gross income for the region. 

 

(21)     
1

N
n

n

PROF PROFT


  

 

PROFT nPROF

income of each sub-region. 

G

income  sub-region, nPROF , giving an optimal solut regional level that is 

equally optimal at sub-region

The maximisation of the regional objective function is subject to a series of constraints that 

fix the structural characteristics (the surface) and reproduce the agricultural policy scenarios 

for each sub-region. Specifically, the structural constraint (21) on the available resources 

obliges the land used for produce sol n
vxh , re-used, n

rxh , the set-aside, nxhs and the non-

productive cultivated land respecting good agronomic practice nxhb , to be at least equal to 

the total land availability at sub-regional level, nb . 

(21)   
V R

n n n n
v r

1 1

n

v r

xh xh xh xhb b     s
 
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The structure of (21) allows us to determine the set-aside due to the variable nxhs , (set-aside 

surface), which is also present in the constraint 2)(2  concerning the sub-region set-aside: 

nn n n
v

Vcop

xh xhs xhs
 

  
 
  (22) 

where n  is the set-aside rate for each sub-region that multiplies the surface used for COP 

crops. 

In the r

production by sub-region has been 

 same way constraints have been added fo  beet and tomato crops. Also in this case the 

divided into two quotas, the first relating to the quantity 

produced during the year of observation and the second to the excess production with respect 

to the quota on which the output price penalty is to be applied (23).  

(23) 
n
ORT

n
ORT

ORTORTORT

xxq 
 

where n
ORTx  is the variable of production level of horticultural crops (ORT), and the other 

symbols have the same meaning as those used for the milk quota con

nnn xfxqx 

straints. 

both the milk quota constraints and the horticultural crop constraints there is an objective 

on for each sub-region, , introducing a negative income component for the part 

of the production that exceeds the quota. 

the sub-regional 

llow for the 

sent a highly useful element for agricultural policy 

For 

functi  nPROF

This procedure can be replicated from regional to national level, replacing 

constraints with a single constraint that functions on national level. This would a

introduction of an agricultural policy system, such as the “Maximum Guaranteed Surface”, 

maintaining the production particularities of each single sub-region thanks to the gathered 

information. This last aspect could repre

analyses, which are increasingly having to consider the technological, structural, production 

and economic characteristics of the individual European sub-regions. Furthermore, the main 

agricultural intervention tools, the principle of decoupling farm aid and modulation, have 

been introduced into the PMP model. 
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4. PMP cost estimation approach using farm 
total variable costs 

 

The PMP in its classical approach, presented in the paper by Paris and Howitt (1998), is an 

articulated method consisting of three different phases, each of which is geared at obtaining 

additional information on the behaviour of the farm so as to be able to simulate its behaviour 

in conditions of maximization of the gross margin (Howitt and Paris, 1998; Paris and Arfini, 

2000). The PMP method has been widely used in the simulation of alternative policy and 

market scenarios, utilising micro technical-economic data relative both to individual farms 

and to mean farms that are representative of a region or a sector (Arfini et al., 2005). The 

success of the method is to be largely attributed to the relatively low requirement for 

information on the business and, first and foremost, to the possibility to use data banks, 

among which also the FADN data bank (Arfini, 2005) . 

Notwithstanding the numerous studies that adopt the PMP approach using the FADN data, the 

methodology nonetheless comes up against a limitation consisting of the lack of FADN data 

on specific production costs per process. The lack of this information poses a problem during 

the calibration phase of the model, when the estimation of the cost function requires a non 

negative marginal cost for all production processes activated by a single holding (Paris and 

Arfini, 2000).  

This problem is dealt with in this analysis by resorting to an approach that utilises dual 

optimality conditions directly in the estimation phase of the non linear function.  The 

approach qualifies itself as an extension of the Heckelei proposal (2002), according to which 

the first phase of the classical PMP method can be avoided by imposing first order conditions 

directly in the second cost function estimation phase. Moreover, as a guide to the correct 

estimation of the explicit activity costs, the model considers the information relative to the 

total farm variable costs available in the European FADN archive. This “innovation” becomes 

particularly important as it enables us to perform analyses utilising the European data bank 

without having to resort to parameters that are exogenous to the model.  

According to this new approach, the PMP model falls into two phases: a) the aim of the first 

is to estimate specific cultivation costs through the reconstruction of a non linear function of 

the total variable cost that considers the exogenous information on the total variable costs 

observed for the individual farm; b) the aim of the second is the calibration of the observed 

production situation through the resolving of a farm gross margin maximization problem, in 

the objective function of which the cost function estimated in the previous phase is entered. 

The first phase is defined by an estimation model of a quadratic cost function in which the 

squares of errors are minimised:  
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(24)     

1
min '

2u
LS  u u

       

subject to 

(25)          se 0x   c λ R'Rx u       

(26)         se 0x   c λ R'Rx u       

(27)     TCc'x         

(28)     
 1

'
2

TC u x x' R'R x
      

(29)               c λ A'y p A's

(30)    -  b'y λ'x p'x s'h cx       

(31)            
1/ 2R LD

(32)     
,

1

0
N

n j
n

u



        

By means of the model (24)-(32) a non linear cost function can be estimated using the explicit 

information on the total farm variable costs (TC) available in the FADN data bank. The 

restrictions (25) and (26) define the relationship between marginal costs derived from a linear 

function and marginal costs derived from a quadratic cost function. c λ  defines the sum of 

the explicit process costs and the differential marginal costs, i.e. the costs that are implicit in 

the decision-making process of the entrepreneur and not accounted for in the holding’s 

bookkeeping. Both components are variables that are endogenous to the minimization 

problem. To guarantee consistency between the estimate of the total specific costs and those 

effectively recorded by the corporate accounting system, the restriction (27) imposes that the 

total estimated explicit cost should not be more than the total variable cost observed in the 

FADN data bank. Restriction (28) defines a further restriction on the costs estimated by the 

model, where the non linear cost function must at least equal the value of the total cost (TC) 

measured. In order to guarantee consistency between the estimation process and the optimal 

conditions, restriction (29) introduces the traditional condition of economic equilibrium, 

where total marginal costs must be greater or equal to marginal revenues.  The total marginal 

costs also consider the use cost of the factors of production defined by the product of the 

technical coefficients matrix A’ and the shadow price of the restricting factors y; while the 

marginal revenues are defined by the sum of the products’ selling prices, p, and any existing 

public subsidies. The additional restriction (30) defines the optimal condition, where the value 

of the primary function must correspond exactly to the value of the objective function of the 

dual problem. In order to ensure that the matrix of the quadratic cost function is symmetrical, 

positive and semi-defined, the model adopts Cholesky’s decomposition method, according to 
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which a matrix that respects the conditions stated is the result of the product of a triangular 

matrix, a diagonal matrix and the transpose of the first triangular matrix (31). Last but not 

least, restriction (32) establishes that the sum of the errors, u, must be equivalent to zero. 

The cost function estimated with the model (24)-(32) may be used in a model of 

maximization of the corporate gross margin, ignoring the calibration restrictions imposed 

during the first phase of the classical PMP approach. In this case, the dual relations entered in 

the preceding cost estimation model guarantee the reproduction of the situation observed. The 

model, therefore, appears as follows: 

(33)     0

1 ˆ ˆmax
2x

ML


     


p'x s'h x'Qx u'x


'

     

subject to 

(34)              Ax b

(35)           
0      1,...,j j jA x h j J   

The model (33)-(35) precisely calibrates the farming system observed, thanks to the function 

of non linear cost entered in the objective function which preserves the (economic) 

information on the levels of production effectively attained. The matrix Q estimated is 

reconstructed using Cholesky’s decomposition: . Restriction (34) represents 

the restriction on the structural capacity of the farm, while the relation (35) enables us to 

obtain information on the hectares of land (or number of animals) associated with each 

process j. Once the initial situation has been calibrated through the maximization of the farm 

gross margin, it is possible to introduce variations in the public aid mechanisms and/or in the 

market price levels in order to evaluate the reaction of the farm to the changed environmental 

conditions. The reaction of the farm business will take into account the information used 

during the estimation phase of the cost function, in which it is possible to identify a real, true 

matrix of the firm choices, i.e. Q. 

ˆ ˆ ˆ ˆ ˆ ˆ' Q R R LDL

 

4.1 Empirical analysis 
The methodology presented in this section is applied to a sample of farms belonging to the 

Emilia-Romagna region. The sample is composed by 35 farms placed in the region plain and 

specialized in arable crop productions. The sample is extracted by the Italian FADN for the 

year 2005. The national database contains more information than the European archives. 

Indeed, it has been possible to get information about specific costs used in this analysis as 

comparison term for the estimated information. 

The information used concerns the crop area of each farm, the production level, the price 

information and the related subsidies, the total variable cost at farm level. The sample 
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presents a production set of seven crops: sugarbeet, durum wheat, soft wheat, maize, 

processed tomato, rice and soya. The main characteristics are showed by the table 1. 

 
 
Table 1: Characteristics of the sample 
Main information  
Number of farms 35 
Incidence of sugarbeet (in %) 11 
Incidence of durum wheat (in %) 10 
Incidence of soft wheat (in %) 21 
Incidence of maize (in %) 18 
Incidence of processed tomato (in %) 13 
Incidence of rice (in %) 14 
Incidence of soya (in %) 13 
Average AAU (ha) 175 
Revenue by ha (in euros) 1,565 

 

The high level of the average land per farm reveals the presence of a number of farms with 

large dimension: two farm out of 35 show a total land over than 1.500 ha. These farms are 

placed in the area of Ferrara province, where the level of specialization in arable crops is 

particularly strong. The aims of this analysis is to estimate the level of specific variable costs 

for the crops associated to this group of farms and compare it with the real specific costs 

collected by the national archive.  

 

The table 2 shows the results achieved by the model previously specified. These results 

should be view as preliminary results of a methodology that will be submitted to other tests 

using higher quantity of observations. For each activities, the average specific costs has been 

estimated and compared with the observed average cost. The estimation errors are very small 

for all the crops, but maize presents an estimation error high (31%) with respect the observed 

value. It is interesting to remark that the standards errors calculated for the estimated specific 

cost are very similar to those obtained for the observed values.  

 

Table 2: PMP estimation outcomes 

Specific costs Standard errors 

Activities 
Observed Estimated

In the 
observed 

information

In the 
estimated 

results 
Sugarbeet 0.01890 0.02130 0.03 0.04 
Durum wheat 0.06531 0.07122 0.08 0.14 
Soft wheat 0.06366 0.06290 0.08 0.13 
Maize 0.08569 0.05895 0.11 0.07 
Processed Tomato 0.03576 0.03726 0.02 0.02 
Rice 0.19341 0.20527 0.56 0.58 
Soya 0.09726 0.09224 0.20 0.20 
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It is important to highlight that the information presented below concerns the part of marginal 

costs that one can consider explicit, in an accounting sense. Indeed, this kind of information is 

related to the variable c of the problem (24)-(32), that cost that is component of the total farm 

variable costs included inside the FADN data. The other marginal cost, , that in the same 

sense of the PMP methodology, represents the differential marginal cost. This latter added to 

the accounting cost, c, provides the total marginal cost. The model seems to reproduce quite 

precisely the observed accounting marginal cost of the sample’s crops, with a little deviation 

from the real values for the great part of the information. 
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